Question:

The value of ddxx2x=

Updated On: Aug 14, 2024
  • (A) 2x2logx
  • (B) x22(1+logx)
  • (C) x2x
  • (D) 2x2x[1+logx]
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Explanation:
Given:ddxx2xConcept:logxn=nlogxddx[logx]=1xLet, y=x2xTaking log on both the sides, we getlogy=log(x2x)=2xlogx(logxn=nlogx)Now, taking derivatives,ddx[logy]=2{ddx[x]logx+ddx[logx]x}1ydydx=2[logx+x1x](ddx[logx]=1x)dydx=2y[1+logx]dydx=2x2x[1+logx](y=x2x)Hence, the correct option is (D).
Was this answer helpful?
0
0

Top Questions on distance between two points

View More Questions