\(2\sqrt{13}\)
The distance between two points \( A(x_1, y_1) \) and \( B(x_2, y_2) \) is given by the distance formula:
\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Given:
Substitute the values of \( x_1, y_1, x_2, \) and \( y_2 \): \[ d = \sqrt{((-1) - 3)^2 + ((-2) - 4)^2} \] Simplifying the terms inside the parentheses: \[ d = \sqrt{(-4)^2 + (-6)^2} \] \[ d = \sqrt{16 + 36} = \sqrt{52} \] \[ d = \sqrt{4 \times 13} = 2\sqrt{13} \]
The distance between the points \( A(3,4) \) and \( B(-1,-2) \) is \( \boxed{2\sqrt{13}} \).