Let's break down the trigonometric expressions:
So, we have: \[ \cos 120^\circ + \tan 1485^\circ = -\frac{1}{2} + 1 = \frac{1}{2}. \]
The correct answer is (A) : \(\frac 12.\)
We need to evaluate the expression \( \cos(1200^\circ) + \tan(1485^\circ) \).
Step 1: Evaluate \( \cos(1200^\circ) \)
The cosine function has a period of 360°. We can find an equivalent angle within the range [0°, 360°) by subtracting multiples of 360°.
\[ 1200^\circ = n \times 360^\circ + \theta \]
Divide 1200 by 360:
\[ \frac{1200}{360} \approx 3.33 \]
Calculate \( 3 \times 360^\circ = 1080^\circ \).
\[ 1200^\circ = 1080^\circ + 120^\circ = 3 \times 360^\circ + 120^\circ \]
Therefore,
\[ \cos(1200^\circ) = \cos(3 \times 360^\circ + 120^\circ) = \cos(120^\circ) \]
Now, evaluate \( \cos(120^\circ) \). The angle 120° is in the second quadrant.
In the second quadrant, cosine is negative.
The reference angle is \( 180^\circ - 120^\circ = 60^\circ \).
\[ \cos(120^\circ) = -\cos(60^\circ) \]
We know that \( \cos(60^\circ) = \frac{1}{2} \).
\[\cos(1200^\circ) = \cos(120^\circ) = -\frac{1}{2}\]Step 2: Evaluate \( \tan(1485^\circ) \)
The tangent function has a period of 180° (or 360°). We can use 360°.
\[ 1485^\circ = n \times 360^\circ + \theta \]
Divide 1485 by 360:
\[ \frac{1485}{360} \approx 4.125 \]
Calculate \( 4 \times 360^\circ = 1440^\circ \).
\[ 1485^\circ = 1440^\circ + 45^\circ = 4 \times 360^\circ + 45^\circ \]
Therefore,
\[ \tan(1485^\circ) = \tan(4 \times 360^\circ + 45^\circ) = \tan(45^\circ) \]
We know that \( \tan(45^\circ) = 1 \).
\[\tan(1485^\circ) = 1\]Step 3: Calculate the sum
\[ \cos(1200^\circ) + \tan(1485^\circ) = -\frac{1}{2} + 1 \]
\[ = -\frac{1}{2} + \frac{2}{2} \]
\[ = \frac{-1 + 2}{2} \]
\[= \frac{1}{2}\]The value of the expression is \( \frac{1}{2} \).
Comparing this result with the given options:
The correct option is \( \frac{1}{2} \).
The graph shown below depicts: