Let's break down the trigonometric expressions:
So, we have: \[ \cos 120^\circ + \tan 1485^\circ = -\frac{1}{2} + 1 = \frac{1}{2}. \]
The correct answer is (A) : \(\frac 12.\)
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: