The formula for the acceleration due to gravity at a height \( h \) above the Earth's surface is:
\[
g_h = \frac{g}{\left( 1 + \frac{h}{R} \right)^2}.
\]
Given:
\[
g_h = \frac{g}{2}.
\]
Substituting into the equation:
\[
\frac{g}{2} = \frac{g}{\left( 1 + \frac{h}{R} \right)^2}.
\]
Simplifying:
\[
\left( 1 + \frac{h}{R} \right)^2 = 2.
\]
Taking the square root:
\[
1 + \frac{h}{R} = \sqrt{2}.
\]
Solving for \( h \):
\[
\frac{h}{R} = \sqrt{2} - 1.
\]
Substituting \( R = 6.4 \times 10^6 \, \text{m} \):
\[
h = (\sqrt{2} - 1) \cdot 6.4 \times 10^6.
\]
Simplifying further:
\[
h = (1.414 - 1) \cdot 6.4 \times 10^6 = 0.414 \cdot 6.4 \times 10^6 = 2.6 \times 10^6 \, \text{m}.
\]
Final Answer:
\[
\boxed{2.6 \times 10^6 \, \text{m}}
\]