We are given the expression:
\(
5 \cos \theta + 3 \cos \left( \theta + \frac{\pi}{3} \right) + 3.
\)
To simplify, we will use the sum identity for cosine:
\(
\cos \left( \theta + \frac{\pi}{3} \right) = \cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3}.
\)
Since \( \cos \frac{\pi}{3} = \frac{1}{2} \) and \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \), we substitute these values into the expression:
\(
\cos \left( \theta + \frac{\pi}{3} \right) = \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta.
\)
Now, substitute this into the original expression:
\(
5 \cos \theta + 3 \left( \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \right) + 3.
\)
Simplifying:
\(
5 \cos \theta + \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3.
\)
Combine like terms:
\(
\left( 5 + \frac{3}{2} \right) \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3.
\)
This simplifies to:
\(
\frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3.
\)
Now, we need to find the range of this expression. It is a linear combination of sine and cosine functions, which can be written in the form \( R \cos (\theta - \alpha) \), where \( R \) is the resultant amplitude and \( \alpha \) is the phase shift.
The amplitude \( R \) is given by:
\(
R = \sqrt{\left( \frac{13}{2} \right)^2 + \left( \frac{3\sqrt{3}}{2} \right)^2} = \sqrt{\frac{169}{4} + \frac{27}{4}} = \sqrt{\frac{196}{4}} = \sqrt{49} = 7.
\)
Thus, the maximum value of \( \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \) is 7, and the minimum value is -7.
Now, adding the constant term 3:
\(
\text{Maximum value} = 7 + 3 = 10,
\)
\(
\text{Minimum value} = -7 + 3 = -4.
\)
Therefore, the value of the expression lies between \( -4 \) and \( 10 \).
Thus, the correct answer is:
\(
\boxed{(D) \, -4 \, \text{and} \, 10}.
\)