We can use the trigonometric identity \(\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)\)
\(\sin\left(\frac{5\pi}{12}\right) \sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right) \sin\left(\frac{\pi}{12}\right)\)
Using the identity, we have:
\(\sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right) \sin\left(\frac{\pi}{12}\right) = \left(\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)\right) \sin\left(\frac{\pi}{12}\right)\)
Simplifying further:
\((\sin(\frac{\pi}{4})\cos(\frac{\pi}{6}) + \cos(\frac{\pi}{4})\sin(\frac{\pi}{6}))\sin(\frac{\pi}{12}) = (\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2})\sin(\frac{\pi}{12})\)
Combining terms:
\(\left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)\sin\left(\frac{\pi}{12}\right) = \left(\frac{\sqrt{3} + 1}{2}\right) \cdot \sin\left(\frac{\pi}{12}\right)\)
Now, \(\sin\left(\frac{\pi}{12}\right)\) can be simplified using the half-angle formula:
\(\sin\left(\frac{\pi}{12}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{6}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}}\)
Substituting back into the expression:
\(\left(\frac{\sqrt{3} + 1}{2}\right) \sin\left(\frac{\pi}{12}\right) = \left(\frac{\sqrt{3} + 1}{2}\right) \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}}\)
Simplifying the expression:
\(\left(\frac{\sqrt{3} + 1}{2}\right) \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \left(\frac{\sqrt{3} + 1}{2}\right) \sqrt{\frac{2 - \sqrt{3}}{4}} = \left(\frac{\sqrt{3} + 1}{2}\right) \left(\frac{\sqrt{2} - \sqrt{3}}{2}\right)\)
Multiplying the fractions:
\(\left(\frac{\sqrt{3} + 1}{2}\right) \left(\frac{\sqrt{2} - \sqrt{3}}{2}\right) = \frac{\sqrt{6} - \sqrt{3} + \sqrt{2} - 1}{4}\)
Therefore, the value of \(\sin\left(\frac{5\pi}{12}\right) \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{3} + \sqrt{2} - 1}{4}\)
Hence, the correct option is (D) \(\frac{1}{4}\).
We are asked to find the value of: \(\sin\left(\frac{5\pi}{12}\right) \cdot \sin\left(\frac{\pi}{12}\right)\)
Use the identity: \[ \sin A \cdot \sin B = \frac{1}{2} \left[ \cos(A - B) - \cos(A + B) \right] \]
Let \( A = \frac{5\pi}{12} \), \( B = \frac{\pi}{12} \)
Then:
\[ \sin\left(\frac{5\pi}{12}\right) \cdot \sin\left(\frac{\pi}{12}\right) = \frac{1}{2} \left[ \cos\left(\frac{5\pi}{12} - \frac{\pi}{12}\right) - \cos\left(\frac{5\pi}{12} + \frac{\pi}{12}\right) \right] \]
Simplify:
\[ = \frac{1}{2} \left[ \cos\left(\frac{4\pi}{12}\right) - \cos\left(\frac{6\pi}{12}\right) \right] = \frac{1}{2} \left[ \cos\left(\frac{\pi}{3}\right) - \cos\left(\frac{\pi}{2}\right) \right] \]
We know: \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{2}\right) = 0\)
So: \[ = \frac{1}{2} \left( \frac{1}{2} - 0 \right) = \frac{1}{4} \]
Correct Answer: \(\frac{1}{4}\)
We want to find the value of the expression \(\sin \frac{5\pi}{12} \sin \frac{\pi}{12}\).v
We can use the product-to-sum trigonometric identity:
\[ \mathbf{2 \sin A \sin B = \cos(A-B) - \cos(A+B)} \]
or equivalently,
\[ \mathbf{\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]} \]
In this case, let \(A = \frac{5\pi}{12}\) and \(B = \frac{\pi}{12}\).
First, calculate \(A-B\) and \(A+B\):
\[ A - B = \frac{5\pi}{12} - \frac{\pi}{12} = \frac{4\pi}{12} = \mathbf{\frac{\pi}{3}} \]
\[ A + B = \frac{5\pi}{12} + \frac{\pi}{12} = \frac{6\pi}{12} = \mathbf{\frac{\pi}{2}} \]
Now, substitute these into the identity:
\[ \sin \frac{5\pi}{12} \sin \frac{\pi}{12} = \frac{1}{2} \left[ \cos\left(\frac{\pi}{3}\right) - \cos\left(\frac{\pi}{2}\right) \right] \]
We know the exact values of cosine for these angles:
Substitute these values back into the expression:
\[ \sin \frac{5\pi}{12} \sin \frac{\pi}{12} = \frac{1}{2} \left[ \frac{1}{2} - 0 \right] \]
\[ \sin \frac{5\pi}{12} \sin \frac{\pi}{12} = \frac{1}{2} \left[ \frac{1}{2} \right] \]
\[ \sin \frac{5\pi}{12} \sin \frac{\pi}{12} = \mathbf{\frac{1}{4}} \]
Comparing this with the given options, the correct option is:
\(\frac{1}{4}\)
The graph shown below depicts:
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: