Let the given integral be denoted by \( I \). \[ I = \int_{0}^{4042} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4042 - x}} \, dx \quad \quad (1) \]
We will use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Here, \( a = 4042 \) and \( f(x) = \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4042 - x}} \). Applying the property, we replace \( x \) with \( a - x = 4042 - x \): \[ I = \int_{0}^{4042} \frac{\sqrt{4042 - x}}{\sqrt{4042 - x} + \sqrt{4042 - (4042 - x)}} \, dx \] \[ I = \int_{0}^{4042} \frac{\sqrt{4042 - x}}{\sqrt{4042 - x} + \sqrt{4042 - 4042 + x}} \, dx \] \[ I = \int_{0}^{4042} \frac{\sqrt{4042 - x}}{\sqrt{4042 - x} + \sqrt{x}} \, dx \quad \quad (2) \]
Now, add equation (1) and equation (2): \[ I + I = \int_{0}^{4042} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4042 - x}} \, dx + \int_{0}^{4042} \frac{\sqrt{4042 - x}}{\sqrt{x} + \sqrt{4042 - x}} \, dx \] \[ 2I = \int_{0}^{4042} \left( \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4042 - x}} + \frac{\sqrt{4042 - x}}{\sqrt{x} + \sqrt{4042 - x}} \right) \, dx \] \[ 2I = \int_{0}^{4042} \frac{\sqrt{x} + \sqrt{4042 - x}}{\sqrt{x} + \sqrt{4042 - x}} \, dx \] \[ 2I = \int_{0}^{4042} 1 \, dx \]
Evaluate the integral: \[ 2I = [x]_{0}^{4042} \] \[ 2I = 4042 - 0 \] \[ 2I = 4042 \]
Solve for \( I \): \[ I = \frac{4042}{2} \] \[ I = 2021 \]
The value of the integral is 2021. This corresponds to option (B).
We are given the integral:
\[ I = \int\limits_0^{4042}\frac{\sqrt{x}\ dx}{\sqrt{x}+\sqrt{4042-x}} \]
Step 1: Use the property of definite integrals
The identity used is: \[ \int_0^a f(x)\,dx = \int_0^a f(a - x)\,dx \]
Let \[ f(x) = \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4042 - x}} \]
Then, \[ f(4042 - x) = \frac{\sqrt{4042 - x}}{\sqrt{4042 - x} + \sqrt{x}} \]
Step 2: Add both forms of the integral
\[ I = \int_0^{4042} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4042 - x}} \,dx \] \[ I = \int_0^{4042} \frac{\sqrt{4042 - x}}{\sqrt{4042 - x} + \sqrt{x}} \,dx \]
Adding both: \[ 2I = \int_0^{4042} \left( \frac{\sqrt{x} + \sqrt{4042 - x}}{\sqrt{x} + \sqrt{4042 - x}} \right) dx = \int_0^{4042} 1 \, dx \] \[ 2I = 4042 \Rightarrow I = \frac{4042}{2} = 2021 \]
Final Answer: \( \boxed{2021} \)
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: