The value of \( 36 \big(4 \cos^2 9^\circ - 1\big) \big(4 \cos^2 27^\circ - 1\big) \big(4 \cos^2 81^\circ - 1\big) \big(4 \cos^2 243^\circ - 1\big) \) is:
Using the trigonometric identity:
\[ 4 \cos^2 \theta - 1 = 4(1 - \sin^2 \theta) - 1 = 3 - 4 \sin^2 \theta = \frac{\sin 3\theta}{\sin \theta}. \]
Substitute this into the given expression:
\[ 36 \big(4 \cos^2 9^\circ - 1\big) \big(4 \cos^2 27^\circ - 1\big) \big(4 \cos^2 81^\circ - 1\big) \big(4 \cos^2 243^\circ - 1\big) \]
\[ = 36 \cdot \frac{\sin 27^\circ}{\sin 9^\circ} \cdot \frac{\sin 81^\circ}{\sin 27^\circ} \cdot \frac{\sin 243^\circ}{\sin 81^\circ} \cdot \frac{\sin 729^\circ}{\sin 243^\circ}. \]
Simplify the product:
\[ = 36 \cdot \frac{\sin 729^\circ}{\sin 9^\circ}. \]
Since \( \sin 729^\circ = \sin 9^\circ \) (as \( 729^\circ \mod 360^\circ = 9^\circ \)):
\[ \frac{\sin 729^\circ}{\sin 9^\circ} = 1. \]
Thus, the value is:
\[ 36 \cdot 1 = 36. \]
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:


Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is: