The value of \( 36 \big(4 \cos^2 9^\circ - 1\big) \big(4 \cos^2 27^\circ - 1\big) \big(4 \cos^2 81^\circ - 1\big) \big(4 \cos^2 243^\circ - 1\big) \) is:
Using the trigonometric identity:
\[ 4 \cos^2 \theta - 1 = 4(1 - \sin^2 \theta) - 1 = 3 - 4 \sin^2 \theta = \frac{\sin 3\theta}{\sin \theta}. \]
Substitute this into the given expression:
\[ 36 \big(4 \cos^2 9^\circ - 1\big) \big(4 \cos^2 27^\circ - 1\big) \big(4 \cos^2 81^\circ - 1\big) \big(4 \cos^2 243^\circ - 1\big) \]
\[ = 36 \cdot \frac{\sin 27^\circ}{\sin 9^\circ} \cdot \frac{\sin 81^\circ}{\sin 27^\circ} \cdot \frac{\sin 243^\circ}{\sin 81^\circ} \cdot \frac{\sin 729^\circ}{\sin 243^\circ}. \]
Simplify the product:
\[ = 36 \cdot \frac{\sin 729^\circ}{\sin 9^\circ}. \]
Since \( \sin 729^\circ = \sin 9^\circ \) (as \( 729^\circ \mod 360^\circ = 9^\circ \)):
\[ \frac{\sin 729^\circ}{\sin 9^\circ} = 1. \]
Thus, the value is:
\[ 36 \cdot 1 = 36. \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.