We know the following trigonometric values:
- \( \tan 45^\circ = 1 \), so \( \tan^2 45^\circ = 1 \)
- \( \cos 30^\circ = \frac{\sqrt{3}}{2} \), so \( \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \)
- \( \sin 60^\circ = \frac{\sqrt{3}}{2} \), so \( \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \)
Now substitute these values into the expression:
\[
2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ = 2 \times 1 + \frac{3}{4} - \frac{3}{4}
\]
Simplifying the expression:
\[
= 2 + 0 = 2
\]
Step 1: Conclusion.
Thus, the value of the expression is 2.