To solve the integral \(\int_0^{\frac{\pi}{2}} \log \left(\frac{5 + 4 \sin x}{5 + 4 \cos x}\right)\,dx\), we use the property of definite integrals: \(\int_0^a f(x)\,dx = \int_0^a f(a-x)\,dx\).
Applying this property, let \( I = \int_0^{\frac{\pi}{2}} \log \left(\frac{5 + 4 \sin x}{5 + 4 \cos x}\right)\,dx \).
Then, by the symmetry property, \( I = \int_0^{\frac{\pi}{2}} \log \left(\frac{5 + 4 \sin (\frac{\pi}{2} - x)}{5 + 4 \cos (\frac{\pi}{2} - x)}\right)\,dx \).
Using trigonometric identities, \(\sin(\frac{\pi}{2} - x) = \cos x\) and \(\cos(\frac{\pi}{2} - x) = \sin x\), we transform the expression: \(\frac{5 + 4 \cos x}{5 + 4 \sin x}\).
Thus, the integral becomes: \( I = \int_0^{\frac{\pi}{2}} \log \left(\frac{5 + 4 \cos x}{5 + 4 \sin x}\right)\,dx \).
Adding the original and transformed integrals, we have:
\(2I = \int_0^{\frac{\pi}{2}} \left( \log \left(\frac{5 + 4 \sin x}{5 + 4 \cos x}\right) + \log \left(\frac{5 + 4 \cos x}{5 + 4 \sin x}\right)\right)\,dx \).
The expressions inside the logarithms simplify to:
\(\log \left(\frac{(5 + 4 \sin x)(5 + 4 \cos x)}{(5 + 4 \cos x)(5 + 4 \sin x)}\right) = \log (1) = 0\).
Therefore, \(2I = \int_0^{\frac{\pi}{2}} 0\,dx = 0 \).
Hence, \(I = 0\).
The value of the integral is 0.