We are given the expression \( \cos^{-1} \left( \cos \left( \frac{7\pi}{6} \right) \right) \). The range of the inverse cosine function, \( \cos^{-1} x \), is \( [0, \pi] \). However, \( \frac{7\pi}{6} \) is outside this range. To find the value, we first calculate the cosine of \( \frac{7\pi}{6} \). We know that: \[ \cos \left( \frac{7\pi}{6} \right) = \cos \left( \pi + \frac{\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) = -\frac{\sqrt{3}}{2} \] Now, we want to find the angle in the range \( [0, \pi] \) whose cosine is \( -\frac{\sqrt{3}}{2} \). This angle is \( \frac{5\pi}{6} \). Thus, the value of \( \cos^{-1} \left( \cos \left( \frac{7\pi}{6} \right) \right) \) is \( \frac{5\pi}{6} \).
The correct option is (D) : \(\frac{5\pi}{6}\)
We want to find the value of \(\cos^{-1}\left(\cos\left(\frac{7\pi}{6}\right)\right)\).
The range of the inverse cosine function, \(\cos^{-1}(x)\), is \([0, \pi]\).
Since \(\frac{7\pi}{6}\) is not in the range \([0, \pi]\), we cannot directly say that \(\cos^{-1}\left(\cos\left(\frac{7\pi}{6}\right)\right) = \frac{7\pi}{6}\).
We have \(\cos\left(\frac{7\pi}{6}\right) = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}\).
Now we want to find \(\theta\) such that \(\cos\theta = -\frac{\sqrt{3}}{2}\) and \(0 \le \theta \le \pi\).
We know that \(\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}\) and \(\frac{5\pi}{6}\) is in the interval \([0, \pi]\).
Therefore, \(\cos^{-1}\left(\cos\left(\frac{7\pi}{6}\right)\right) = \frac{5\pi}{6}\).
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: