To solve this problem, we need to evaluate the expression:
1. Given Expression:
\[ \frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ} \]
2. Use the Known Value:
We know that:
\[ \tan 45^\circ = 1 \Rightarrow \tan^2 45^\circ = 1 \]
3. Substitute into the Expression:
\[ \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \]
Final Answer:
Option (A) 0 is correct.
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____