$$ I = \int_{-1/2}^{1/2} \cos^{-1} x \, dx. $$
We can use integration by parts. Let $ u = \cos^{-1} x $ and $ dv = dx $, so $ du = \frac{-1}{\sqrt{1-x^2}} dx $ and $ v = x $. Using the integration by parts formula $ \int u \, dv = uv - \int v \, du $, we have:
$$ I = x \cos^{-1} x \Big|_{-1/2}^{1/2} - \int_{-1/2}^{1/2} x \cdot \frac{-1}{\sqrt{1-x^2}} dx. $$
Simplify the second term:
$$ I = x \cos^{-1} x \Big|_{-1/2}^{1/2} + \int_{-1/2}^{1/2} \frac{x}{\sqrt{1-x^2}} dx. $$
To evaluate $ \int \frac{x}{\sqrt{1-x^2}} dx $, let $ w = 1-x^2 $, so $ dw = -2x dx $, or equivalently $ x dx = -\frac{1}{2} dw $. Substituting:
$$ \int \frac{x}{\sqrt{1-x^2}} dx = \int \frac{-\frac{1}{2} dw}{\sqrt{w}} = -\frac{1}{2} \int w^{-1/2} dw = -\frac{1}{2} \cdot \frac{w^{1/2}}{1/2} = -\sqrt{w} = -\sqrt{1-x^2}. $$
Thus:
$$ I = x \cos^{-1} x \Big|_{-1/2}^{1/2} - \sqrt{1-x^2} \Big|_{-1/2}^{1/2}. $$
Evaluate the terms:
$$ I = \left( \frac{1}{2} \cos^{-1} \left( \frac{1}{2} \right) - \left( -\frac{1}{2} \cos^{-1} \left( -\frac{1}{2} \right) \right) \right) - \left( \sqrt{1-\left(\frac{1}{2}\right)^2} - \sqrt{1-\left(-\frac{1}{2}\right)^2} \right). $$
Simplify:
$$ I = \frac{1}{2} \cos^{-1} \left( \frac{1}{2} \right) + \frac{1}{2} \cos^{-1} \left( -\frac{1}{2} \right) - \left( \sqrt{1-\frac{1}{4}} - \sqrt{1-\frac{1}{4}} \right). $$
The square root terms cancel out, leaving:
$$ I = \frac{1}{2} \left( \cos^{-1} \left( \frac{1}{2} \right) + \cos^{-1} \left( -\frac{1}{2} \right) \right). $$
Using $ \cos^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{3} $ and $ \cos^{-1} \left( -\frac{1}{2} \right) = \frac{2\pi}{3} $:
$$ I = \frac{1}{2} \left( \frac{\pi}{3} + \frac{2\pi}{3} \right) = \frac{1}{2} \cdot \frac{3\pi}{3} = \frac{\pi}{2}. $$
We need to find the value of \(\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos^{-1} x \, dx\).
Let's integrate by parts. Let \(u = \cos^{-1} x\) and \(dv = dx\). Then \(du = -\frac{1}{\sqrt{1-x^2}} dx\) and \(v = x\).
\(\int \cos^{-1} x \, dx = x \cos^{-1} x - \int x \cdot (-\frac{1}{\sqrt{1-x^2}}) dx\)
\(\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1-x^2}} dx\)
For the second integral, let \(w = 1-x^2\), then \(dw = -2x \, dx\), so \(x \, dx = -\frac{1}{2} dw\).
\(\int \frac{x}{\sqrt{1-x^2}} dx = \int \frac{-\frac{1}{2}}{\sqrt{w}} dw = -\frac{1}{2} \int w^{-1/2} dw = -\frac{1}{2} \cdot \frac{w^{1/2}}{1/2} = -w^{1/2} = -\sqrt{1-x^2}\)
So, \(\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1-x^2}\).
Now we need to evaluate the definite integral:
\(\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos^{-1} x \, dx = [x \cos^{-1} x - \sqrt{1-x^2}]_{-\frac{1}{2}}^{\frac{1}{2}}\)
= \(((\frac{1}{2}) \cos^{-1} (\frac{1}{2}) - \sqrt{1-(\frac{1}{2})^2}) - ((-\frac{1}{2}) \cos^{-1} (-\frac{1}{2}) - \sqrt{1-(-\frac{1}{2})^2}))\)
= \((\frac{1}{2} \cdot \frac{\pi}{3} - \sqrt{\frac{3}{4}}) - (-\frac{1}{2} \cdot \frac{2\pi}{3} - \sqrt{\frac{3}{4}})\)
= \((\frac{\pi}{6} - \frac{\sqrt{3}}{2}) - (-\frac{\pi}{3} - \frac{\sqrt{3}}{2})\)
= \(\frac{\pi}{6} - \frac{\sqrt{3}}{2} + \frac{\pi}{3} + \frac{\sqrt{3}}{2}\)
= \(\frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{6} + \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}\)
Therefore, the correct option is (B) \(\frac{\pi}{2}\).
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: