Let ∆ABC be isosceles where BC is the base of fixed length b.
Let the length of the two equal sides of ∆ABC be a.
Draw AD⊥BC.
Now, in ∆ADC,by applying the Pythagoras theorem,we have:
AD=\(\sqrt {a^2-\frac{b^2}{4}}\)
∴Area of triangle \((A)=\frac{1}{2}b\) \(\sqrt {a^2-\frac{b^2}{4}}\).
The rate of change of the area with respect to time (t) is given by
\(\frac{dA}{dt}\)=\(\frac{1}{2}b\).\(\frac{2a}{2\sqrt {a^2-\frac{b^2}{4}}}\) \(\frac{da}{dt}\) = \(\frac{ab}{\sqrt {4a^2-4b^2}}\frac{da}{dt}\)
It is given that the two equal sides of the triangle are decreasing at the rate of 3cm per second.
\(\frac{da}{dt}=3cm/s\)
∴ \(\frac{dA}{dt}=\frac{-3ab}{\sqrt{4a^2-b^2}}\)
Then,when a=b, we have:
\(\frac{dA}{dt}=\frac{-3ab}{\sqrt{4a^2-b^2}}\)=-\(\frac{3b^2}{\sqrt{3b^2}}\)=\(-{\sqrt3b}\)
Hence, if the two equal sides are equal to the base, then the area of the triangle is decreasing at the rate of \(-{\sqrt3b}\,cm^2/s.\)
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?