The transformer connection given in the figure is part of a balanced 3-phase circuit where the phase sequence is “abc”. The primary to secondary turns ratio is 2:1. If \( I_a + I_b + I_c = 0 \), then the relationship between \( I_A \) and \( I_{ad} \) will be:

The transformer has a Delta secondary and Star (Y) primary configuration with a turns ratio of 2:1 (primary:secondary).
For such a configuration:
- There is a \( 30^\circ \) phase shift between line currents.
- The magnitude scaling from line current on delta side to line current on star side is: \[ \left| \frac{I_Y}{I_\Delta} \right| = \frac{1}{\sqrt{3}} \times \frac{1}{n} = \frac{1}{\sqrt{3} \cdot 2} \] where \( n = 2 \) is the turns ratio from primary to secondary. Hence: - \( \left| \frac{I_A}{I_{ad}} \right| = \frac{1}{2\sqrt{3}} \) - And for a delta-star transformer, the delta side current lags the star side current by \(30^\circ\) So, \( I_{ad} \) lags \( I_A \) by \( 30^\circ \).
Assuming ideal op-amps, the circuit represents a

The I-V characteristics of the element between the nodes X and Y is best depicted by

In the circuit, \( I_{\text{DC}} \) is an ideal current source, the transistors \( M_1 \), \( M_2 \) are assumed to be biased in saturation wherein \( V_{\text{in}} \) is the input signal and \( V_{\text{DC}} \) is the fixed DC voltage. Both transistors have a small signal resistance of \( R_{ds} \) and transconductance of \( g_m \). The small signal output impedance of the circuit is:

Assuming ideal op-amps, the circuit represents:

Selected data points of the step response of a stable first-order linear time-invariant (LTI) system are given below. The closest value of the time constant (in seconds) of the system is:
\[ \begin{array}{|c|c|} \hline \textbf{Time (sec)} & \textbf{Output} \\ \hline 0.6 & 0.78 \\ 1.6 & 2.8 \\ 2.6 & 2.98 \\ 10 & 3 \\ \infty & 3 \\ \hline \end{array} \]