The word DISTRIBUTION contains the letters: I, I, I, T, T, D, S, R, B, U, O, N.
We calculate the number of distinct 4-letter words that can be formed by considering different cases of letter repetition:
Total number of possible words:
\[ \text{Total} = 3024 + 672 + 6 + 32 = 3734 \]
The letters in the word 'DISTRIBUTION' are: I, I, I, T, T, D, S, R, B, U, O, N.
Calculate the number of words formed using different combinations:
Total number of words:
\[ \text{Total} = 3024 + 672 + 6 + 32 = 3734 \]If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 