Step 1: Formula for inertial period.
The inertial oscillation period is:
\[
T = \frac{2\pi}{f}, f = 2\Omega \sin\phi,
\]
where \(f\) is the Coriolis parameter, \(\Omega = 7.292 \times 10^{-5}\ \mathrm{rad/s}\), and \(\phi\) is latitude.
Step 2: Relating two locations.
\[
\frac{T_R}{T_S} = \frac{f_S}{f_R} = \frac{\sin\phi_S}{\sin\phi_R}.
\]
Given: \(T_R = 1.5 T_S\).
So,
\[
1.5 = \frac{\sin\phi_S}{\sin\phi_R}.
\]
Step 3: Substitution for location S.
At location S: \(\phi_S = 45^\circ S\).
So, \(\sin\phi_S = \sin 45^\circ = 0.7071\).
\[
1.5 = \frac{0.7071}{\sin\phi_R} \Rightarrow \sin\phi_R = \frac{0.7071}{1.5} = 0.4714.
\]
Step 4: Find latitude.
\(\phi_R = \arcsin(0.4714) \approx 28^\circ\).
Step 5: Select hemisphere.
Options given include 28°N, not 28°S. Both are possible mathematically, but usually inertial oscillations are symmetric in both hemispheres. Since option 28°N is listed, that is the correct choice.
Final Answer:
\[
\boxed{28^\circ N}
\]