The wavelength corresponding to the maximum energy emitted by a black body is given by Wien's displacement law:
\[
\lambda_{\text{max}} = \frac{b}{T}
\]
where:
- \( b = 2.89 \times 10^{-3} \, \text{mK} \) (Wien's constant),
- \( T = 6000 \, \text{K} \) (temperature of the Sun's surface).
Substitute the values:
\[
\lambda_{\text{max}} = \frac{2.89 \times 10^{-3}}{6000} = 4.816 \times 10^{-7} \, \text{m}
\]
This is approximately \( 4.82 \times 10^{-7} \, \text{m} \).
So, the wavelength corresponding to the maximum energy is 4.82 \(\times 10^{-7}\) m.