Consider a rope fixed at both ends under tension so that it is horizontal (i.e. assume the rope is along x-axis, with gravity acting along z-axis). Now the right end is continually oscillated at high frequency n (say n=100 Hz) horizontally and in a direction along the rope; amplitude of oscillation is negligible. The oscillation travells along the rope and is reflected at the left end.
Let the total length of rope be l, total mass be m and the acceleration due to gravity be g.
After initial phase (say a mintue or so), the rope has __(BLANK-1)__ wave, which is __(BLANK-2)__ in nature. It results from superposition of left travelling and right travelling __(BLANK-3)__ waves. This resulting wave has a frequency __ (BLANK-4)_ that of oscillation frequency nu. Simple dimensional analysis indicates that the frequency of can be of the form: ___(BLANK-5)__ .
A convex lens has power \( P \). It is cut into two halves along its principal axis. Further, one piece (out of two halves) is cut into two halves perpendicular to the principal axis as shown in the figure. Choose the incorrect option for the reported lens pieces.
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying:
A metallic sphere of radius \( R \) carrying a charge \( q \) is kept at a certain distance from another metallic sphere of radius \( R_4 \) carrying a charge \( Q \). What is the electric flux at any point inside the metallic sphere of radius \( R \) due to the sphere of radius \( R_4 \)?
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is: