For heat conduction problems, use Fourier's law and maintain proportionality for area, temperature difference, and length when comparing different rods.
\( 3:10 \)
Step 1: Understanding the formula for heat conduction
The rate of heat flow (\( H \)) through a cylindrical rod in steady state is given by Fourier’s law: \[ H = \frac{k A \Delta T}{L} \] where: - \( k \) is the thermal conductivity (same for both rods), - \( A \) is the cross-sectional area, - \( \Delta T \) is the temperature difference, - \( L \) is the length of the rod.
Step 2: Express heat flow ratio for rods A and B
Given: \[ \frac{H_A}{H_B} = \frac{5}{9}, \quad \frac{\Delta T_A}{\Delta T_B} = \frac{2}{3} \] Since the rods are cylindrical, the cross-sectional area is: \[ A = \pi r^2 \] So the heat flow equation for each rod can be written as: \[ \frac{H_A}{H_B} = \frac{k \pi r_A^2 (\Delta T_A) / L_A}{k \pi r_B^2 (\Delta T_B) / L_B} \] \[ \frac{H_A}{H_B} = \frac{(r_A^2 \Delta T_A / L_A)}{(r_B^2 \Delta T_B / L_B)} \]
Step 3: Substitute given ratios
Given \( \frac{r_A}{r_B} = \frac{1}{2} \), so: \[ \frac{r_A^2}{r_B^2} = \frac{1^2}{2^2} = \frac{1}{4} \] \[ \frac{H_A}{H_B} = \frac{\left( \frac{1}{4} \times \frac{2}{3} \right) / L_A}{(1 \times 1) / L_B} \] \[ \frac{5}{9} = \frac{\left( \frac{2}{12} \right) / L_A}{(1 / L_B)} \] \[ \frac{5}{9} = \frac{2}{12} \times \frac{L_B}{L_A} \] \[ \frac{5}{9} = \frac{2 L_B}{12 L_A} \] \[ \frac{5}{9} = \frac{L_B}{6 L_A} \] \[ L_B = \frac{6L_A \times 5}{9} = \frac{30L_A}{9} = \frac{10L_A}{3} \] \[ \frac{L_A}{L_B} = \frac{3}{10} \] Thus, the ratio of the lengths of rods A and B is \( 3:10 \).
Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?