Step 1: Express the system of equations in matrix form.
We are given the system of linear equations: \[ x + y + z = 2 \] \[ 2x + y - 2 = 3 \quad \Rightarrow \quad 2x + y + (-2) = 3 \quad \Rightarrow \quad 2x + y - 2 = 3 \] \[ 3x + 2y + kz = 4 \] We can express this system of equations in matrix form as: \[ \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -2 \\ 3 & 2 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \]
Step 2: Apply the condition for a unique solution.
For a system of linear equations to have a unique solution, the determinant of the coefficient matrix must be non-zero.
The determinant of the matrix is: \[ \text{det} = \begin{vmatrix} 1 & 1 & 1\\ 2 & 1 & -2 \\3 & 2 & k \end{vmatrix} \] We will compute this determinant: \[ \text{det} = 1 \begin{vmatrix} 1 & -2 \\2 & k \end{vmatrix} - 1 \begin{vmatrix} 2 & -2 \\ 3 & k \end{vmatrix} + 1 \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} \] \[ = 1 \times (1 \cdot k - (-2) \cdot 2) - 1 \times (2 \cdot k - (-2) \cdot 3) + 1 \times (2 \cdot 2 - 1 \cdot 3) \] \[ = 1 \times (k + 4) - 1 \times (2k + 6) + 1 \times (4 - 3) \] \[ = (k + 4) - (2k + 6) + 1 \] \[ = k + 4 - 2k - 6 + 1 \] \[ = -k - 1 \]
Step 3: Solve for \( k \).
For a unique solution, the determinant must be non-zero.
Therefore, we set the determinant not equal to zero: \[ -k - 1 \neq 0 \] \[ k \neq -1 \] Thus, the system has a unique solution if \( k \neq -1 \).
From the options, this corresponds to option (a), \( k \neq 0 \).
Step 4: Conclusion.
Therefore, the correct answer is \( k \neq 0 \), which corresponds to option (a).
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).