Step 1: Let the two numbers be $x$ and $y$ \[ x + y = 18 \tag{1}. \] \[ \frac{1}{x} + \frac{1}{y} = \frac{1}{4} \tag{2}. \] Step 2: Rewrite equation (2) Using $\frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy}$: \[ \frac{x + y}{xy} = \frac{1}{4}. \] Substitute $x + y = 18$ from (1): \[ \frac{18}{xy} = \frac{1}{4} \implies xy = 72 \tag{3}. \] Step 3: Solve the quadratic equation From (1) and (3), $x$ and $y$ are roots of the quadratic equation: \[ t^2 - (x + y)t + xy = 0 \implies t^2 - 18t + 72 = 0. \] Factorize: \[ t^2 - 18t + 72 = (t - 12)(t - 6) = 0. \] \[ t = 12 \quad \text{or} \quad t = 6. \] Step 4: Find the numbers The two numbers are $12$ and $6$. Correct Answer: The numbers are $12$ and $6$.
The obtuse angle between lines \(2y = x + 1\) and \(y = 3x + 2\) is:
What is the general solution of the equation \( \cot\theta + \tan\theta = 2 \)?
शहनाई की जादुई आवाज का असर हमारे सिर चढ़कर बोलने लगता है । (मिश्र वाक्य में बदलिए)