The equation is: \[ \cos x \sqrt{16 \sin^2 x} = 4 \cos x |\sin x| = 1 \implies \cos x |\sin x| = \frac{1}{4} \] Since $|\sin x| \geq 0$, consider $\cos x \neq 0$. Solve for two cases based on $\sin x$. Case 1: $\sin x \geq 0$ \[ \cos x \sin x = \frac{1}{4} \implies \sin 2x = 2 \sin x \cos x = \frac{1}{2} \] \[ 2x = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad 2x = \frac{5\pi}{6} + 2k\pi \] \[ x = \frac{\pi}{12} + k\pi \quad \text{or} \quad x = \frac{5\pi}{12} + k\pi \] For $x \in (0, 2\pi)$, $k = 0, 1$: - $k = 0$: $x = \frac{\pi}{12}$, $\frac{5\pi}{12}$. Check $\sin x \geq 0$: $\sin\left(\frac{\pi}{12}\right)>0$, $\sin\left(\frac{5\pi}{12}\right)>0$. - $k = 1$: $x = \frac{\pi}{12} + \pi = \frac{13\pi}{12}$, $\frac{5\pi}{12} + \pi = \frac{17\pi}{12}$. Check: $\sin\left(\frac{13\pi}{12}\right) = \sin\left(\pi + \frac{\pi}{12}\right) = -\sin\left(\frac{\pi}{12}\right)<0$, $\sin\left(\frac{17\pi}{12}\right) = \sin\left(\pi + \frac{5\pi}{12}\right) = -\sin\left(\frac{5\pi}{12}\right)<0$. Both invalid. Valid solutions: $\frac{\pi}{12}$, $\frac{5\pi}{12}$. Case 2: $\sin x<0$ \[ \cos x (-\sin x) = \frac{1}{4} \implies -\sin x \cos x = \frac{1}{4} \implies \sin 2x = -\frac{1}{2} \] \[ 2x = \frac{7\pi}{6} + 2k\pi \quad \text{or} \quad 2x = \frac{11\pi}{6} + 2k\pi \] \[ x = \frac{7\pi}{12} + k\pi \quad \text{or} \quad x = \frac{11\pi}{12} + k\pi \] For $x \in (0, 2\pi)$, $k = 0, 1$: - $k = 0$: $x = \frac{7\pi}{12}$, $\frac{11\pi}{12}$. Check $\sin x<0$: $\sin\left(\frac{7\pi}{12}\right)>0$, $\sin\left(\frac{11\pi}{12}\right)>0$. Both invalid. - $k = 1$: $x = \frac{19\pi}{12}$, $\frac{23\pi}{12}$. Check: $\sin\left(\frac{19\pi}{12}\right) = \sin\left(\pi + \frac{7\pi}{12}\right) = -\sin\left(\frac{7\pi}{12}\right)<0$, $\sin\left(\frac{23\pi}{12}\right) = \sin\left(\pi + \frac{11\pi}{12}\right) = -\sin\left(\frac{11\pi}{12}\right)<0$. Both valid. Valid solutions: $\frac{19\pi}{12}$, $\frac{23\pi}{12}$. Sum of solutions: \[ \frac{\pi}{12} + \frac{5\pi}{12} + \frac{19\pi}{12} + \frac{23\pi}{12} = \frac{\pi + 5\pi + 19\pi + 23\pi}{12} = \frac{48\pi}{12} = 4\pi \] The original states the correct answer as $\frac{13\pi}{2}$, suggesting a possible typo. Rechecking, the sum $4\pi$ matches option (4). However, since the provided answer is (2), assume a problem error. Option (4) is likely correct based on calculations. Options (1), (3) are incorrect.