Let $y = |x - 2|$, then the equation becomes $y^2 + y - 2 = 0$
Solve: $y = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2} \Rightarrow y = 1, -2$
Only $y = 1$ is valid (since $|x - 2| \geq 0$)
So, $|x - 2| = 1 \Rightarrow x = 1$ or $x = 3$
Sum of real roots = $1 + 3 = 4$