Step 1:
Let the series be defined as:
\[
S = 1 + \frac{5}{6} + \frac{12}{6^2} + \frac{22}{6^3} + \frac{35}{6^4} + \cdots \quad {(i)}
\]
Now, define another series:
\[
\frac{S}{6} = 1 + \frac{5}{6^2} + \frac{12}{6^3} + \frac{22}{6^4} + \cdots \quad {(ii)}
\]
Step 2:
On subtracting equation (ii) from equation (i):
\[
S - \frac{S}{6} = \left(1 + \frac{5}{6} + \frac{12}{6^2} + \cdots \right) - \left(1 + \frac{5}{6^2} + \frac{12}{6^3} + \cdots \right)
\]
Step 3:
This simplifies to:
\[
\frac{5S}{6} = 1 + \frac{4}{6} + \frac{7}{6^2} + \frac{10}{6^3} + \cdots
\]
Now, multiply both sides by 36:
\[
\frac{25S}{36} = 1 + \frac{3}{6} + \frac{3}{6^2} + \frac{3}{6^3} + \cdots
\]
Step 4:
The right-hand side is a geometric series with the first term 1 and the common ratio \( \frac{1}{6} \). The sum of this geometric series is:
\[
S = \frac{8}{5} \times \frac{36}{25} = \frac{288}{125}
\]
Thus, the sum of the series is:
\[
S = \frac{288}{125}
\]
Thus, the value of \( S \) matches option (C).