Step 1: Let the roots of the quadratic be \( \alpha \) and \( \beta \)
We are given:
\[
16x^2 - 10x + 1 = 0
\Rightarrow \text{Let roots be } \alpha, \beta
\]
Step 2: Use identities for power sums
We want:
\[
\alpha^4 + \beta^4
\]
Use identity:
\[
\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2
\]
We first need \( \alpha + \beta \), \( \alpha\beta \):
From Vieta’s formulas:
\[
\alpha + \beta = \frac{10}{16} = \frac{5}{8}, \quad
\alpha \beta = \frac{1}{16}
\]
Now:
\[
\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta
= \left( \frac{5}{8} \right)^2 - 2 \cdot \frac{1}{16}
= \frac{25}{64} - \frac{1}{8} = \frac{25 - 8}{64} = \frac{17}{64}
\]
Also:
\[
\alpha^2\beta^2 = (\alpha\beta)^2 = \left( \frac{1}{16} \right)^2 = \frac{1}{256}
\]
So:
\[
\alpha^4 + \beta^4 = \left( \frac{17}{64} \right)^2 - 2 \cdot \frac{1}{256}
= \frac{289}{4096} - \frac{2}{256} = \frac{289}{4096} - \frac{32}{4096}
= \frac{257}{4096}
\]