Let the first term of the arithmetic progression be \( a \) and the common difference be \( d \).
The sum of the first \( n \) terms is given by:
\[
S_n = \frac{n}{2} \left( 2a + (n - 1) d \right)
\]
We are given that the sum of the first six terms is 54, so:
\[
S_6 = \frac{6}{2} \left( 2a + 5d \right) = 54 \quad \Rightarrow \quad 3(2a + 5d) = 54 \quad \Rightarrow \quad 2a + 5d = 18 \quad \cdots (1)
\]
Also, the ratio of the 10\textsuperscript{th} term to the 30\textsuperscript{th} term is 11 : 31, so:
\[
\frac{a + 9d}{a + 29d} = \frac{11}{31}
\]
Cross multiplying:
\[
31(a + 9d) = 11(a + 29d) \quad \Rightarrow \quad 31a + 279d = 11a + 319d
\]
\[
20a = 40d \quad \Rightarrow \quad a = 2d \quad \cdots (2)
\]
Substituting \( a = 2d \) into equation (1):
\[
2(2d) + 5d = 18 \quad \Rightarrow \quad 4d + 5d = 18 \quad \Rightarrow \quad 9d = 18 \quad \Rightarrow \quad d = 2
\]
Thus, \( a = 2 \times 2 = 4 \).
Now, the 60\textsuperscript{th} term is given by:
\[
T_{60} = a + 59d = 4 + 59 \times 2 = 4 + 118 = 122
\]
Thus, the 60\textsuperscript{th} term is 122.