The sum of the first $n$ natural numbers is 55. What is $n$?
11
- Step 1: Formula for sum of first $n$ natural numbers - \[ S_n = \frac{n(n+1)}{2} \]
- Step 2: Substitute the given sum - \[ \frac{n(n+1)}{2} = 55 \]
- Step 3: Multiply through by 2 - \[ n(n+1) = 110 \]
- Step 4: Solve the quadratic - \[ n^2 + n - 110 = 0 \] Discriminant: $\Delta = 1 + 440 = 441$, $\sqrt{\Delta} = 21$.
- Step 5: Roots - \[ n = \frac{-1 \pm 21}{2} \] Only positive root is: \[ n = \frac{-1 + 21}{2} = \frac{20}{2} = 10 \]
- Step 6: Conclusion - $n = 10$, matching option (3).
Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: