Given:
- Triangles \(\triangle ABC \sim \triangle PQR\) (i.e., the triangles are similar)
- \(\angle A = 30^\circ\)
- \(\angle Q = 90^\circ\)
We are to find the value of \(\angle R + \angle B\)
Step 1: Use Triangle Sum Property
In any triangle, the sum of the interior angles is \(180^\circ\)
In \(\triangle PQR\):
\[
\angle P + \angle Q + \angle R = 180^\circ
\Rightarrow \angle P + 90^\circ + \angle R = 180^\circ
\Rightarrow \angle P + \angle R = 90^\circ
\]
In \(\triangle ABC\):
\[
\angle A + \angle B + \angle C = 180^\circ
\Rightarrow 30^\circ + \angle B + \angle C = 180^\circ
\Rightarrow \angle B + \angle C = 150^\circ
\]
Step 2: Use similarity of triangles
Since \(\triangle ABC \sim \triangle PQR\), their corresponding angles are equal:
- \(\angle A = \angle P = 30^\circ\)
- \(\angle B = \angle R\)
- \(\angle C = \angle Q = 90^\circ\)
So from the similarity:
\[
\angle B = \angle R
\Rightarrow \angle B + \angle R = 2 \times \angle B
\]
From earlier, in \(\triangle ABC\):
\(\angle B + \angle C = 150^\circ\), and since \(\angle C = 90^\circ\),
\[
\angle B = 60^\circ \Rightarrow \angle R = 60^\circ
\Rightarrow \angle B + \angle R = 60^\circ + 60^\circ = 120^\circ
\]
Final Answer:
\(\angle R + \angle B = \boxed{120^\circ}\)