Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is
$180^\circ$
$120^\circ$
What is the angle between the hour and minute hands at 4:30?
In the adjoining figure, TP and TQ are tangents drawn to a circle with centre O. If $\angle OPQ = 15^\circ$ and $\angle PTQ = \theta$, then find the value of $\sin 2\theta$. 
