30, 15
Let father’s age = \( F \), son’s age = \( S \).
Given: \( F + S = 45 \), and five years ago: \( (F - 5)(S - 5) = 124 \).
From \( F + S = 45 \), \( F = 45 - S \). Substitute into the second equation:
\[ (45 - S - 5)(S - 5) = 124 \Rightarrow (40 - S)(S - 5) = 124 \] \[ 40S - 5S^2 - 200 + 5S = 124 \Rightarrow -5S^2 + 45S - 200 = 124 \] \[ -5S^2 + 45S - 324 = 0 \Rightarrow 5S^2 - 45S + 324 = 0 \Rightarrow S^2 - 9S + 64.8 = 0 \] Discriminant: \( 81 - 4 \times 64.8 \approx 81 - 259.2<0 \).
Recalculate correctly:
Test options: \( F = 36, S = 9 \): \( 36 + 9 = 45 \), and \( (36 - 5)(9 - 5) = 31 \times 4 = 124 \).
Thus, the answer is 36, 9.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: