\(\frac{\sqrt17+3}{2}\)
\(\frac{\sqrt{17}+5}{2}\)
5
\(\frac{9-\sqrt{17}}{2}\)
The correct answer is (A) : \(\frac{\sqrt17+3}{2}\)
ƒ(x) = |x2– 3x – 2| – x
\(∀x∈[−1,2]\)
\(f(x) = \begin{cases} x^2 - 4x - 2 & \text{if } -1 \leq x < \frac{3 - \sqrt{17}}{2} \\ -x^2 + 2x + 2 & \text{if } \frac{3 - \sqrt{17}}{2} \leq x \leq 2 \end{cases}\)
\(ƒ(x)_{max} = 3\)
\(ƒ(x)_{min}=ƒ(\frac{3−\sqrt{17}}{2})\)
\(=\frac{\sqrt{17}-3}{2}\)
Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to
Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: