Question:

The sum of the absolute maximum and absolute minimum values of the function \(\begin{array}{l} f\left(x\right)=\tan^{-1}\left(\sin x-\cos x\right) \end{array}\)in the interval\( [0, π]\) is

Updated On: Aug 15, 2024
  • 0
  • \(tan^{-1}\frac{1}{\sqrt{2}}-\frac{π}{4}\)
  • \(cos^{-1}\frac{1}{\sqrt{3}}-\frac{π}{4}\)
  • \(-\frac{π}{12}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

\(f(x)=tan^{−1}(sinx−cosx)\)

Let \(g(x)=sinx−cosx\)

=\(\sqrt{2}sin(x−\frac{π}{4})\) and \(x−\frac{π}{4}∈[−\frac{π}{4},\frac{3π}{4}]\)

 ∴ g\((x)∈[−1,\sqrt2]\) 

and \(tan^{−1}x\) is an increasing function 

∴ \(f(x)∈[tan^{−1}(−1),tan^{−1}\sqrt2] ∈[−\frac{π}{4},tan^{−1}\sqrt2]\)

 ∴ Sum of \(f_{max}\) and \(f_{min}\)=\(tan^{−1}\sqrt{2}−\frac{π}{4}\)

\(cos^{−1}(\frac{1}{\sqrt{3}})−\frac{π}{4}\)

Was this answer helpful?
0
0

Concepts Used:

Maxima and Minima

What are Maxima and Minima of a Function?

The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.

There are two types of maxima and minima that exist in a function, such as:

  • Local Maxima and Minima
  • Absolute or Global Maxima and Minima