We are given the equation:
\[
\left( \sin x + \sin 4x \right) + \left( \sin 2x + \sin 3x \right) = 0
\]
We begin by simplifying this equation using trigonometric identities. Using the sum-to-product identity:
\[
\sin A + \sin B = 2 \sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
\]
We can apply this identity to both pairs of sines:
\[
\left( \sin x + \sin 4x \right) = 2 \sin \left( \frac{x + 4x}{2} \right) \cos \left( \frac{4x - x}{2} \right) = 2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{3x}{2} \right)
\]
\[
\left( \sin 2x + \sin 3x \right) = 2 \sin \left( \frac{2x + 3x}{2} \right) \cos \left( \frac{3x - 2x}{2} \right) = 2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right)
\]
Thus, the equation becomes:
\[
2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{3x}{2} \right) + 2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) = 0
\]
Factor out \( 2 \sin \left( \frac{5x}{2} \right) \):
\[
2 \sin \left( \frac{5x}{2} \right) \left( \cos \left( \frac{3x}{2} \right) + \cos \left( \frac{x}{2} \right) \right) = 0
\]
For this product to be zero, either:
\[
\sin \left( \frac{5x}{2} \right) = 0 \quad {or} \quad \cos \left( \frac{3x}{2} \right) + \cos \left( \frac{x}{2} \right) = 0
\]
Let's first solve for the case where \( \sin \left( \frac{5x}{2} \right) = 0 \):
\[
\sin \left( \frac{5x}{2} \right) = 0 \quad \Rightarrow \quad \frac{5x}{2} = 0, \pi, 2\pi, 3\pi, \dots
\]
Thus, \( x = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \dots \).
Now, let's solve for the case where \( \cos \left( \frac{3x}{2} \right) + \cos \left( \frac{x}{2} \right) = 0 \):
Using the sum-to-product identity again:
\[
\cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
\]
We apply this identity to the equation:
\[
\cos \left( \frac{3x}{2} \right) + \cos \left( \frac{x}{2} \right) = 2 \cos \left( \frac{3x}{2} + \frac{x}{2} \right) \cos \left( \frac{3x}{2} - \frac{x}{2} \right)
\]
\[
= 2 \cos \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) = 2 \cos (2x) \cos (x)
\]
Thus, the equation becomes:
\[
2 \cos (2x) \cos (x) = 0
\]
For this product to be zero, either:
\[
\cos (2x) = 0 \quad {or} \quad \cos (x) = 0
\]
For \( \cos (2x) = 0 \):
\[
2x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots \quad \Rightarrow \quad x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \dots
\]
For \( \cos (x) = 0 \):
\[
x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots
\]
Now, combining all the solutions, we have the general solution for \( x \):
\[
x = 0, \pi, 2\pi, 3\pi, \dots
\]
Finally, we can conclude that the sum of these values of \( x \) is:
\[
6\pi + \pi + 2\pi = 9\pi
\]