The sum of all the elements of the set {α ∈ {1, 2, …, 100} : HCF(α, 24) = 1} is
The correct answer is 1633
The numbers upto 24 which gives g.c.d. with 24 equals to 1 are 1, 5, 7, 11, 13, 17, 19 and 23.
Sum of these numbers is 96
There are four such blocks and a number 97 is there upto 100.
∴ Complete sum
= 96 + (24 × 8 + 96) + (48 × 8 + 96) + (72 × 8 + 96) + 97
= 1633
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is:
Some important operations on sets include union, intersection, difference, and the complement of a set, a brief explanation of operations on sets is as follows:
1. Union of Sets:
2. Intersection of Sets:
3.Set Difference:
4.Set Complement: