To solve the equation \(\log_{x-3}(x^2 - 9) = \log_{x-3}(x + 1) + 2\), we first need to consider the valid domain for the logarithms. The base of the logarithm, \(x - 3\), must be positive and cannot be 1. Thus, we have \(x - 3 > 0\) and \(x - 3 \neq 1\), which implies:
Additionally, the arguments of the logarithms must also be positive:
Combining these conditions, we see that the valid range for \(x\) is \(x > 3\).
Returning to the original equation, we can use properties of logarithms to rewrite it as: \(\log_{x-3}(x^2 - 9) = \log_{x-3}((x + 1)(x - 3))\).
Thus, we simplify the equation using logarithmic properties:
\[\log_{x-3}(x^2 - 9) = \log_{x-3}((x + 1)(x - 3)) + 2\].
Therefore, \(\log_{x-3}(x^2 - 9) - \log_{x-3}((x + 1)(x - 3)) = 2\).
Applying the quotient rule for logarithms gives: \(\log_{x-3}\left(\frac{x^2 - 9}{(x + 1)(x - 3)}\right) = 2\).
For this equality to hold, the quotient must be equal to the base raised to the power of 2:
Cross-multiplying gives us:
\[x + 3 = (x - 3)(x + 1)\]Expanding the right-hand side:
\[x + 3 = x^2 - 3x + x - 3\]Simplifying the equation:
\[x + 3 = x^2 - 2x - 3\]Rearranging gives us the quadratic equation:
\[x^2 - 3x - 6 = 0\]Solving this quadratic equation using the quadratic formula:
\[x = \frac{3 \pm \sqrt{9 + 4 \cdot 1 \cdot 6}}{2}\]\[x = \frac{3 \pm \sqrt{33}}{2}\]
We have two potential solutions: \(\frac{3 + \sqrt{33}}{2}\) and \(\frac{3 - \sqrt{33}}{2}\). However, only \(\frac{3 + \sqrt{33}}{2}\) is greater than 3 and satisfies all the domain conditions.
Therefore, the sum of all possible real values of \(x\) is \(\frac{3 + \sqrt{33}}{2}\).
Step 1: Determine the domain. The base of the logarithm is \(x - 3\), so we need: \[ x - 3>0 \quad \Rightarrow \quad x>3, \] and \[ x - 3 \neq 1 \quad \Rightarrow \quad x \neq 4. \] Also, the arguments of the logarithms must be positive: \[ x^2 - 9>0 \quad \Rightarrow \quad x>3 \text{ or } x<-3, \] \[ x + 1>0 \quad \Rightarrow \quad x>-1. \] Combining all conditions: \[ x>3, \quad x \neq 4. \]
Step 2: Simplify the equation using log properties. Given: \[ \log_{x-3}(x^2 - 9) = \log_{x-3}(x + 1) + 2. \] Bring logs together: \[ \log_{x-3}(x^2 - 9) - \log_{x-3}(x + 1) = 2. \] Using the property \(\log_b A - \log_b B = \log_b \left(\dfrac{A}{B}\right)\): \[ \log_{x-3}\left(\frac{x^2 - 9}{x + 1}\right) = 2. \] Factor: \[ x^2 - 9 = (x - 3)(x + 3), \quad \Rightarrow \quad \frac{x^2 - 9}{x + 1} = \frac{(x - 3)(x + 3)}{x + 1}. \] So: \[ \log_{x-3}\left(\frac{(x - 3)(x + 3)}{x + 1}\right) = 2. \]
Step 3: Convert the logarithmic equation to exponential form. \[ \log_{x-3}\left(\frac{(x - 3)(x + 3)}{x + 1}\right) = 2 \quad \Rightarrow \quad \frac{(x - 3)(x + 3)}{x + 1} = (x - 3)^2. \] Since \(x>3\), we have \(x - 3 \neq 0\), so we can safely multiply and divide. \[ \frac{(x - 3)(x + 3)}{x + 1} = (x - 3)^2 \quad \Rightarrow \quad (x - 3)(x + 3) = (x - 3)^2 (x + 1). \] Divide both sides by \(x - 3\): \[ x + 3 = (x - 3)(x + 1). \] Expand the right-hand side: \[ x + 3 = x^2 - 2x - 3. \] Rearrange: \[ 0 = x^2 - 2x - 3 - x - 3 = x^2 - 3x - 6. \]
Step 4: Solve the quadratic and apply the domain. \[ x^2 - 3x - 6 = 0 \quad \Rightarrow \quad x = \frac{3 \pm \sqrt{9 + 24}}{2} = \frac{3 \pm \sqrt{33}}{2}. \] We must satisfy \(x>3\). \[ \frac{3 - \sqrt{33}}{2}<0 \quad (\text{reject}), \quad \frac{3 + \sqrt{33}}{2}>3 \quad (\text{accept}). \] Hence the only valid solution is: \[ x = \frac{3 + \sqrt{33}}{2}. \] Since the question asks for the sum of all possible real values of \(x\), the sum is just this value: \[ \boxed{\dfrac{3 + \sqrt{33}}{2}}. \]
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: