Step 1: Write the conditions for logarithmic function.
For $f(x)=\log_{g(x)}(h(x))$ to be defined: \[ g(x)>0,\quad g(x)\neq 1,\quad h(x)>0 \] Here, \[ g(x)=10x^2-17x+7,\quad h(x)=18x^2-11x+1 \] Step 2: Solve $h(x)>0$.
\[ 18x^2-11x+1>0 \] Roots: \[ x=\frac{1}{9},\; \frac{1}{2} \] Since the coefficient of $x^2$ is positive: \[ x<\frac{1}{9}\quad \text{or}\quad x>\frac{1}{2} \] Step 3: Solve $g(x)>0$.
\[ 10x^2-17x+7>0 \] Roots: \[ x=\frac{7}{10},\;1 \] Hence, \[ x<\frac{7}{10}\quad \text{or}\quad x>1 \] Step 4: Exclude $g(x)=1$.
\[ 10x^2-17x+7=1 \Rightarrow 10x^2-17x+6=0 \] Roots: \[ x=\frac{3}{5},\;1 \] These values must be excluded from the domain. Step 5: Combine all conditions.
Intersecting all valid intervals: \[ (-\infty,\tfrac{1}{9})\cup(\tfrac{1}{2},\tfrac{3}{5})\cup(\tfrac{7}{10},\infty)-\{1\} \] Thus, \[ a=\frac{1}{9},\quad b=\frac{1}{2},\quad c=\frac{3}{5},\quad d=\frac{7}{10},\quad e=1 \] Step 6: Compute the required value.
\[ 90(a+b+c+d+e) =90\left(\frac{1}{9}+\frac{1}{2}+\frac{3}{5}+\frac{7}{10}+1\right) =316 \]
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :