The actual free energy change \( \Delta G \) is given by the equation: \[ \Delta G = \Delta G^\circ + RT \ln Q \] Where:
- \( \Delta G^\circ \) is the standard free energy change (given),
- \( R \) is the gas constant (8.315 J·mol\(^{-1}\)·K\(^{-1}\)), - \( Q \) is the reaction quotient, given by: \[ Q = \frac{[\text{pyruvate}][\text{ATP}]}{[\text{PEP}][\text{ADP}]}. \] Substitute the given concentrations (in mol/L) into \( Q \): \[ Q = \frac{(50 \times 10^{-3}) \times (50 \times 10^{-3})}{(25 \times 10^{-3}) \times (25 \times 10^{-3})} = 4. \] Now, we can calculate the actual \( \Delta G \) using: \[ \Delta G = -61.9 \, \text{kJ/mol} + (8.315 \, \text{J/molK}) \times (310.15 \, \text{K}) \times \ln(4) \]
Thus, the actual free energy change is approximately \( \boxed{-28.1} \, \text{kJ/mol} \).