The strong oxidising agent is Co\(^3{+}\).
The number of unpaired electrons in Co\(^3{+}\) (\([3d^6]\)) is 4.
The spin-only magnetic moment is given by: \[ \mu = \sqrt{n(n+2)} \, \text{BM} \]
Substituting \(n = 4\):
\[ \mu = \sqrt{4(4+2)} = \sqrt{24} \approx 5 \, \text{BM} \]
Give explanation for each of the following observations:
(a) With the same d-orbital configuration (d4), Mn3+ ion is an oxidizing agent whereas Cr2+ ion is a reducing agent.
(b) Actinoid contraction is greater from element to element than that among lanthanoids.
(c) Transition metals form a large number of interstitial compounds with H, B, C, and N.
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: