MnF3 has the strongest oxidising ability
\(\begin{bmatrix} EºMn3+/Mn2+∘≃1.57 V& \\ \& EºMn4+/Mn2+∘≃1.2 V & \end{bmatrix}\)
So, spin only magnetic moment
\(=\sqrt{4(4+2)}=\sqrt24\) B.M.
≃5
The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____.
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
Magnetic force is the attraction or repulsion force that results from the motion of electrically charged particles. The magnets are attracted or repellent to one another due to this force. A compass, a motor, the magnets that hold the refrigerator door, train tracks, and modern roller coasters are all examples of magnetic power.
A magnetic field is generated by all moving charges, and the charges that pass through its regions feel a force. Depending on whether the force is attractive or repulsive, it may be positive or negative. The magnetism force is determined by the object's charge, velocity, and magnetic field.
Read More: Magnetic Force and Magnetic Field
The magnitude of the magnetic force depends on how much charge is in how much motion in each of the objects and how far apart they are.
Mathematically, we can write magnetic force as:
A charge will feel a force as it passes through a magnetic field at an angle. This force is given by the equation:
A force acts on the motion of charge q traveling with velocity v in a Magnetism field, and this force is: