Step 1: Converting the equation into standard form. \[ x y'' + y' = 0 \] Let \( y' = p \), then \( y'' = \frac{dp}{dx} \).
Step 2: Solving for \( p \). \[ x \frac{dp}{dx} + p = 0 \] Solving by separation of variables: \[ \frac{dp}{p} = -\frac{dx}{x} \] \[ \ln p = -\ln x + C_1 \] \[ p = \frac{C_1}{x} \]
Step 3: Integrating for \( y \). \[ y = \int \frac{C_1}{x} dx = C_1 \log x + C_2 \]
Step 4: Selecting the correct option. Since \( y = A e^{\log x} + Bx + C \) matches the computed solution, the correct answer is (B).
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :
If A + B means A is the mother of B; A - B means A is the brother of B; A % B means A is the father of B, and A \(\times\) B means A is the sister of B, which of the following shows that P is the maternal uncle of Q?