From the question we have given the differential equation is:
\[
y^2 \, dx + (x^2 - xy + y^2) \, dy = 0.
\]
Step 1: Divide through by \( y^2 \).
\[
\frac{dx}{dy} + \frac{x^2 - x}{y^2} + 1 = 0.
\]
Step 2: Use the substitution \( x = vy \), where \( v = \frac{x}{y} \).
Then,
\[
\frac{dx}{dy} = v + y \frac{dv}{dy}.
\]
Substitute this into the equation:
\[
v + y \frac{dv}{dy} + v^2 - v + 1 = 0.
\]
Simplify the equation:
\[
y \frac{dv}{dy} = -(1 + v^2).
\]
Step 3: Separate variables and integrate.
\[
\frac{dv}{1 + v^2} = -\frac{dy}{y}.
\]
Integrating both sides:
\[
\tan^{-1} v = -\ln y + C,
\]
where \( C \) is the constant of integration.
Step 4: Substitute \( v = \frac{x}{y} \) back into the equation.
\[
\tan^{-1}\left(\frac{x}{y}\right) + \ln y + C = 0.
\]
Final Answer:
\[
\boxed{\tan^{-1}\left(\frac{x}{y}\right) + \ln y + C = 0.}
\]