Rearrange the given equation as follows:
\[
\sqrt{1 - y^2} \, dx = (\sin^{-1} y - x) \, dy.
\]
Next, divide both sides by \( \sqrt{1 - y^2} \):
\[
dx = \frac{\sin^{-1} y - x}{\sqrt{1 - y^2}} \, dy.
\]
Let \( P(y) = \frac{1}{\sqrt{1 - y^2}} \) and \( Q(y) = \frac{\sin^{-1} y}{\sqrt{1 - y^2}} \).
Step 1: Compute the integrating factor (IF)
The integrating factor is given by:
\[
\text{IF} = e^{\int P(y) \, dy} = e^{\sin^{-1} y}.
\]
Step 2: Solve the differential equation
Multiply through by the integrating factor \( \text{IF} \):
\[
e^{\sin^{-1} y} \, dx + e^{\sin^{-1} y} \frac{x}{\sqrt{1 - y^2}} \, dy = e^{\sin^{-1} y} \frac{\sin^{-1} y}{\sqrt{1 - y^2}} \, dy.
\]
This simplifies to:
\[
\frac{d}{dy} \left( x e^{\sin^{-1} y} \right) = e^{\sin^{-1} y} \frac{\sin^{-1} y}{\sqrt{1 - y^2}}.
\]
Now, integrate both sides:
\[
x e^{\sin^{-1} y} = \int e^{\sin^{-1} y} \frac{\sin^{-1} y}{\sqrt{1 - y^2}} \, dy + c.
\]
Simplifying further, we obtain:
\[
x = \sin^{-1} y - 1 + c e^{-\sin^{-1} y}.
\]
Final Answer:
\[
\boxed{x = \sin^{-1} y - 1 + c e^{-\sin^{-1} y}}.
\]