1. Rewrite the differential equation:
Given: \( e^{\frac{dy}{dx}} = x + 1 \)
Take natural logarithm of both sides:
\[ \frac{dy}{dx} = \ln(x + 1) \]
2. Integrate both sides:
\[ y = \int \ln(x + 1) \, dx \]
Use integration by parts (\( u = \ln(x+1) \), \( dv = dx \)):
\[ y = (x + 1)\ln(x + 1) - \int \frac{x + 1}{x + 1} \, dx = (x + 1)\ln(x + 1) - x + C \]
3. Apply the initial condition \( y(0) = 3 \):
\[ 3 = (0 + 1)\ln(0 + 1) - 0 + C \implies 3 = 0 + C \implies C = 3 \]
Thus:
\[ y = (x + 1)\ln(x + 1) - x + 3 \]
Rearrange:
\[ y + x - 3 = (x + 1)\ln(x + 1) \]
Correct Answer: (D) \( y + x - 3 = (x + 1) \log (x + 1) \)
The given differential equation is: \[ e^{\frac{dy}{dx}} = x + 1. \] Take the natural logarithm on both sides: \[ \frac{dy}{dx} = \ln(x + 1). \] Integrate both sides with respect to $x$: \[ y = \int \ln(x + 1) \, dx + C. \] Using integration by parts: \[ \int \ln(x + 1) \, dx = (x + 1)\ln(x + 1) - \int \frac{x + 1}{x + 1} \, dx = (x + 1)\ln(x + 1) - (x + 1). \] Thus: \[ y = (x + 1)\ln(x + 1) - (x + 1) + C. \] Apply the initial condition $y(0) = 3$: \[ 3 = (0 + 1)\ln(0 + 1) - (0 + 1) + C \implies C = 3. \] The solution becomes: \[ y = (x + 1)\ln(x + 1) - (x + 1) + 3 \implies y + x - 3 = (x + 1)\ln(x + 1). \]
$$ e^{\frac{dy}{dx}} = x + 1 $$
Take the natural logarithm of both sides:
$$ \frac{dy}{dx} = \ln(x + 1) $$
Now, separate the variables:
$$ dy = \ln(x + 1) \, dx $$
Integrate both sides of the equation:
$$ \int dy = \int \ln(x + 1) \, dx $$
The left side is easy:
$$ y = \int \ln(x + 1) \, dx $$
To integrate $ \ln(x + 1) $, use integration by parts:
Let $ u = \ln(x + 1) $ and $ dv = dx $.
Then $ du = \frac{1}{x + 1} \, dx $ and $ v = x $.
Integration by parts formula: $ \int u \, dv = uv - \int v \, du $
$$ \int \ln(x + 1) \, dx = x \ln(x + 1) - \int \frac{x}{x + 1} \, dx $$
To solve the remaining integral, perform polynomial long division or notice that $ x = (x+1) - 1 $:
$$ \int \frac{x}{x + 1} \, dx = \int \frac{(x + 1) - 1}{x + 1} \, dx = \int \left[1 - \frac{1}{x + 1}\right] \, dx = x - \ln|x + 1| + C $$
Substitute this back into the equation for $ y $:
$$ y = x \ln(x + 1) - x + \ln|x + 1| + C $$
Now, apply the initial condition $ y(0) = 3 $:
$$ 3 = 0 \cdot \ln(1) - 0 + \ln(1) + C $$ $$ 3 = C $$
Therefore, the solution is:
$$ y = x \ln(x + 1) - x + \ln(x + 1) + 3 $$
Rearranging gives:
$$ y + x - 3 = (x + 1)\ln(x + 1) $$
This corresponds to option (D).