The solubility product of a sparingly soluble salt AX2 is 3.2 ×10–11. Its solubility (in moles/liter) is
3.1×10–4
2 × 10–4
4 × 10–4
5.6 × 10–6
The solubility of the sparingly soluble salt AX2 (with a solubility product of 3.2 × 10⁻¹¹) is 4 × 10⁻⁴ moles/liter.
The ratio of the fundamental vibrational frequencies \( \left( \nu_{^{13}C^{16}O} / \nu_{^{12}C^{16}O} \right) \) of two diatomic molecules \( ^{13}C^{16}O \) and \( ^{12}C^{16}O \), considering their force constants to be the same, is ___________ (rounded off to two decimal places).}
A heat pump, operating in reversed Carnot cycle, maintains a steady air temperature of 300 K inside an auditorium. The heat pump receives heat from the ambient air. The ambient air temperature is 280 K. Heat loss from the auditorium is 15 kW. The power consumption of the heat pump is _________ kW (rounded off to 2 decimal places).
In a Vernier caliper, \(N+1\) divisions of vernier scale coincide with \(N\) divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is:
Law of Chemical Equilibrium states that at a constant temperature, the rate of a chemical reaction is directly proportional to the product of the molar concentrations of the reactants each raised to a power equal to the corresponding stoichiometric coefficients as represented by the balanced chemical equation.
Let us consider a general reversible reaction;
A+B ↔ C+D
After some time, there is a reduction in reactants A and B and an accumulation of the products C and D. As a result, the rate of the forward reaction decreases and that of backward reaction increases.
Eventually, the two reactions occur at the same rate and a state of equilibrium is attained.
By applying the Law of Mass Action;
The rate of forward reaction;
Rf = Kf [A]a [B]b
The rate of backward reaction;
Rb = Kb [C]c [D]d
Where,
[A], [B], [C] and [D] are the concentrations of A, B, C and D at equilibrium respectively.
a, b, c, and d are the stoichiometric coefficients of A, B, C and D respectively.
Kf and Kb are the rate constants of forward and backward reactions.
However, at equilibrium,
Rate of forward reaction = Rate of backward reaction.
Kc is called the equilibrium constant expressed in terms of molar concentrations.
The above equation is known as the equation of Law of Chemical Equilibrium.