The skin depth \(\delta\) is given by:
\[
\delta = \sqrt{\frac{2}{\omega \mu \sigma}} = \frac{1}{\sqrt{\pi f \mu \sigma}}
\]
This implies:
\[
\delta \propto \frac{1}{\sqrt{f}}
\]
So, for two frequencies:
\[
\frac{\delta_2}{\delta_1} = \sqrt{\frac{f_1}{f_2}} = \sqrt{\frac{1.6}{6.4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}
\]
Thus:
\[
\delta_2 = \frac{1}{2} \cdot \delta_1 = \frac{1}{2} \cdot 64.4 = 32.2~\mu m
\]
Final Answer: 32.2 \(\mu m\)