Question:

The sides of a parallelogram are represented by vectors $$ \vec{p} = 5\hat{i} - 4\hat{j} + 3\hat{k} \quad \text{and} \quad \vec{q} = 3\hat{i} + 2\hat{j} - \hat{k}. $$ Then, the area of the parallelogram is

Show Hint

The area of the parallelogram formed by two vectors is the magnitude of their cross product. Remember to use the determinant method for calculating cross products of vectors.
Updated On: May 3, 2025
  • \( \sqrt{684} \) sq units
  • \( \sqrt{72} \) sq units
  • 171 sq units
  • 72 sq units
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

The area of a parallelogram formed by two vectors \( \vec{p} \) and \( \vec{q} \) is given by the magnitude of the cross product of the vectors: \[ \text{Area} = |\vec{p} \times \vec{q}| \] To calculate the cross product \( \vec{p} \times \vec{q} \), we use the determinant method: \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 5 & -4 & 3 3 & 2 & -1 \end{vmatrix} \] Expanding the determinant: \[ \vec{p} \times \vec{q} = \hat{i} \begin{vmatrix} -4 & 3 2 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 5 & 3 \\ 3 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 5 & -4 \\ 3 & 2 \end{vmatrix} \] Solving each 2x2 determinant: \[ = \hat{i} [(-4)(-1) - (3)(2)] - \hat{j} [(5)(-1) - (3)(3)] + \hat{k} [(5)(2) - (-4)(3)] \] \[ = \hat{i} [4 - 6] - \hat{j} [-5 - 9] + \hat{k} [10 + 12] \] \[ = \hat{i} (-2) - \hat{j} (-14) + \hat{k} (22) \] \[ = -2\hat{i} + 14\hat{j} + 22\hat{k} \] Now, calculate the magnitude of the cross product: \[ |\vec{p} \times \vec{q}| = \sqrt{(-2)^2 + 14^2 + 22^2} \] \[ = \sqrt{4 + 196 + 484} = \sqrt{684} \]
Thus, the area of the parallelogram is \( \sqrt{684} \) square units.
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

To determine the area of a parallelogram formed by vectors \( \vec{p} \) and \( \vec{q} \), we need to calculate the magnitude of their cross product, \( \vec{p} \times \vec{q} \).

Given vectors are:

\( \vec{p} = 5\hat{i} - 4\hat{j} + 3\hat{k} \)

\( \vec{q} = 3\hat{i} + 2\hat{j} - \hat{k} \)

The cross product \( \vec{p} \times \vec{q} \) is computed using the determinant:

\(\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -4 & 3 \\ 3 & 2 & -1 \end{vmatrix}\)

Expanding the determinant, we have:

\(\vec{p} \times \vec{q} = \hat{i}((-4)(-1) - 3(2)) - \hat{j}(5(-1) - 3(3)) + \hat{k}(5(2) - (-4)(3))\)

Calculate step-by-step:

  • For \( \hat{i} \): \( 4 - 6 = -2 \)
  • For \( \hat{j} \): \( -5 - 9 = -14 \) (remember the negative sign from the determinant expansion, giving us \( 14 \hat{j} \))
  • For \( \hat{k} \): \( 10 + 12 = 22 \)

This yields:

\(\vec{p} \times \vec{q} = -2\hat{i} + 14\hat{j} + 22\hat{k} \)

The magnitude of this cross product vector is:

\(|\vec{p} \times \vec{q}| = \sqrt{(-2)^2 + (14)^2 + (22)^2}\)

Calculating further:

\(|\vec{p} \times \vec{q}| = \sqrt{4 + 196 + 484} = \sqrt{684}\)

Thus, the area of the parallelogram is \( \sqrt{684} \) square units.

Was this answer helpful?
0
0