To find the shortest distance between the two given lines \( L_1 \) and \( L_2 \), we first need to understand the properties and representations of the lines.
Step 1: Define the equations of the lines.
The line \( L_1 \) is given in symmetric form:
\(\frac{x - 1}{2} = \frac{y + 1}{-3} = \frac{z + 4}{2}\)
This can be rewritten as:
The line \( L_2 \) passes through points \( A(-4, 4, 3) \) and \( B(-1, 6, 3) \).
Since \( L_2 \) is perpendicular to the line:
\(\frac{x - 3}{-2} = \frac{y}{3} = \frac{z - 1}{1}\)
which has direction ratios \( \langle -2, 3, 1 \rangle \), the scalar product of these direction ratios with \( L_2 \) should be zero to be perpendicular.
Let \( \langle a, b, c \rangle \) be the direction ratios of \( L_2 \), then \( -2a + 3b + c = 0 \). We assume the ratio direction compatible with \( \langle 3, 2, 0 \rangle \).
Step 2: Calculate the shortest distance.
The shortest distance between skew lines is given by:
\(d = \frac{|(\mathbf{b_1} \times \mathbf{b_2}) \cdot \mathbf{PQ}|}{|\mathbf{b_1} \times \mathbf{b_2}|}\)
Where:
Now, calculate \(\mathbf{b_1} \times \mathbf{b_2}\):
\(\mathbf{b_1} \times \mathbf{b_2} = |\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}|\)
\(= \mathbf{i}(0 - 4) - \mathbf{j}(0 - 6) + \mathbf{k}(4 + 9)\)
\(= -4 \mathbf{i} + 6 \mathbf{j} + 13 \mathbf{k} = \langle -4, 6, 13 \rangle\)
Then calculate the dot product with \(\mathbf{PQ}\):
\((\mathbf{b_1} \times \mathbf{b_2}) \cdot \mathbf{PQ} = \langle -4, 6, 13 \rangle \cdot \langle -5, 5, 7 \rangle\)
\(= (20 + 30 + 91) = 141\)
Magnitude of \(\mathbf{b_1} \times \mathbf{b_2}\):
\(|\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{(-4)^2 + 6^2 + 13^2} = \sqrt{16 + 36 + 169} = \sqrt{221}\)
Therefore, the shortest distance is:
\(d = \frac{141}{\sqrt{221}}\)
This matches the correct answer: \( \frac{141}{\sqrt{221}} \).
Identify direction ratios and vector between points on the lines. The direction ratios of \( L_1 \) are \(\langle 2, -3, 2 \rangle\), and the direction ratios of \( L_2 \) are \(\langle 3, 2, 0 \rangle\) (since \( z \) is constant, indicating parallel planes along the \( z \)-axis).
Compute vector \(\overrightarrow{AB}\) between points on \( L_1 \) and \( L_2 \). Select points \( A(1, -1, -4) \) on \( L_1 \) and \( B(-4, 4, 3) \) on \( L_2 \). Calculate \(\overrightarrow{AB}\):
\[ \overrightarrow{AB} = \langle -4 - 1, 4 - (-1), 3 - (-4) \rangle = \langle -5, 5, 7 \rangle. \]
Use the shortest distance formula. The shortest distance (S.D.) between two skew lines with direction vectors \(\overrightarrow{d_1} = \langle 2, -3, 2 \rangle\) and \(\overrightarrow{d_2} = \langle 3, 2, 0 \rangle\), and a vector \(\overrightarrow{AB}\) between points on each line, is given by:
\[ \text{S.D} = \frac{|\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2})|}{|\overrightarrow{d_1} \times \overrightarrow{d_2}|}. \]
Calculate \(\overrightarrow{d_1} \times \overrightarrow{d_2}\):
\[ \overrightarrow{d_1} \times \overrightarrow{d_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{vmatrix}. \]
Expanding the determinant:
\[ = \mathbf{i}((-3)(0) - (2)(2)) - \mathbf{j}((2)(0) - (2)(3)) + \mathbf{k}((2)(2) - (-3)(3)), \] \[ = \mathbf{i}(-4) - \mathbf{j}(-6) + \mathbf{k}(4 + 9), \] \[ = \langle -4, 6, 13 \rangle. \]
Compute \(\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2})\)
\[ \overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2}) = \langle -5, 5, 7 \rangle \cdot \langle -4, 6, 13 \rangle, \] \[ = (-5)(-4) + (5)(6) + (7)(13), \] \[ = 20 + 30 + 91 = 141. \]
Calculate \(|\overrightarrow{d_1} \times \overrightarrow{d_2}|\)
\[ |\overrightarrow{d_1} \times \overrightarrow{d_2}| = \sqrt{(-4)^2 + 6^2 + 13^2} = \sqrt{16 + 36 + 169} = \sqrt{221}. \]
Substitute values into the shortest distance formula:
\[ \text{S.D} = \frac{|141|}{\sqrt{221}} = \frac{141}{\sqrt{221}}. \]
Therefore, the answer is:
\[ \frac{141}{\sqrt{221}}. \]

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
