Identify direction ratios and vector between points on the lines. The direction ratios of \( L_1 \) are \(\langle 2, -3, 2 \rangle\), and the direction ratios of \( L_2 \) are \(\langle 3, 2, 0 \rangle\) (since \( z \) is constant, indicating parallel planes along the \( z \)-axis).
Compute vector \(\overrightarrow{AB}\) between points on \( L_1 \) and \( L_2 \). Select points \( A(1, -1, -4) \) on \( L_1 \) and \( B(-4, 4, 3) \) on \( L_2 \). Calculate \(\overrightarrow{AB}\):
\[ \overrightarrow{AB} = \langle -4 - 1, 4 - (-1), 3 - (-4) \rangle = \langle -5, 5, 7 \rangle. \]
Use the shortest distance formula. The shortest distance (S.D.) between two skew lines with direction vectors \(\overrightarrow{d_1} = \langle 2, -3, 2 \rangle\) and \(\overrightarrow{d_2} = \langle 3, 2, 0 \rangle\), and a vector \(\overrightarrow{AB}\) between points on each line, is given by:
\[ \text{S.D} = \frac{|\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2})|}{|\overrightarrow{d_1} \times \overrightarrow{d_2}|}. \]
Calculate \(\overrightarrow{d_1} \times \overrightarrow{d_2}\):
\[ \overrightarrow{d_1} \times \overrightarrow{d_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{vmatrix}. \]
Expanding the determinant:
\[ = \mathbf{i}((-3)(0) - (2)(2)) - \mathbf{j}((2)(0) - (2)(3)) + \mathbf{k}((2)(2) - (-3)(3)), \] \[ = \mathbf{i}(-4) - \mathbf{j}(-6) + \mathbf{k}(4 + 9), \] \[ = \langle -4, 6, 13 \rangle. \]
Compute \(\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2})\)
\[ \overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2}) = \langle -5, 5, 7 \rangle \cdot \langle -4, 6, 13 \rangle, \] \[ = (-5)(-4) + (5)(6) + (7)(13), \] \[ = 20 + 30 + 91 = 141. \]
Calculate \(|\overrightarrow{d_1} \times \overrightarrow{d_2}|\)
\[ |\overrightarrow{d_1} \times \overrightarrow{d_2}| = \sqrt{(-4)^2 + 6^2 + 13^2} = \sqrt{16 + 36 + 169} = \sqrt{221}. \]
Substitute values into the shortest distance formula:
\[ \text{S.D} = \frac{|141|}{\sqrt{221}} = \frac{141}{\sqrt{221}}. \]
Therefore, the answer is:
\[ \frac{141}{\sqrt{221}}. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: