We are given the inequality \( 4 + 11x - 3x^2>0 \). Let's solve this quadratic inequality.
First, solve the equation \( 4 + 11x - 3x^2 = 0 \). We rearrange it as:
\[
3x^2 - 11x - 4 = 0
\]
Now, solve this quadratic equation using the quadratic formula:
\[
x = \frac{-(-11) \pm \sqrt{(-11)^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3}
\]
\[
x = \frac{11 \pm \sqrt{121 + 48}}{6} = \frac{11 \pm \sqrt{169}}{6}
\]
\[
x = \frac{11 \pm 13}{6}
\]
Thus, the roots are:
\[
x = \frac{11 + 13}{6} = 4 \quad \text{and} \quad x = \frac{11 - 13}{6} = -\frac{1}{3}
\]
The inequality \( 4 + 11x - 3x^2>0 \) holds for \( x \in \left( -\frac{1}{3}, 4 \right) \).