Two vectors \( \vec{A} \) and \( \vec{B} \) are perpendicular if their dot product is zero: \( \vec{A} \cdot \vec{B} = 0 \).
Let \( \vec{A} = \lambda\hat{i} - 3\hat{j} + 5\hat{k} \)
Let \( \vec{B} = 2\lambda\hat{i} - \lambda\hat{j} + \hat{k} \)
Calculate their dot product:
\( \vec{A} \cdot \vec{B} = (\lambda)(2\lambda) + (-3)(-\lambda) + (5)(1) \)
\( = 2\lambda^2 + 3\lambda + 5 \)
For the vectors to be perpendicular, \( \vec{A} \cdot \vec{B} = 0 \).
So, we need to solve the quadratic equation \( 2\lambda^2 + 3\lambda + 5 = 0 \) for real values of \(\lambda\).
The discriminant of this quadratic equation \(ax^2+bx+c=0\) is \(D = b^2-4ac\).
Here, \(a=2, b=3, c=5\).
\( D = (3)^2 - 4(2)(5) = 9 - 40 = -31 \).
Since the discriminant \(D = -31<0\), the quadratic equation \( 2\lambda^2 + 3\lambda + 5 = 0 \) has no real roots for \(\lambda\).
The roots are complex.
Therefore, there are no real values of \(\lambda\) for which the given vectors are perpendicular.
The set of real values of \(\lambda\) is the empty set, denoted by \( \phi \).
This matches option (d).
\[ \boxed{\phi} \]