Given that the ratio of scores of Amal and Bimal is \( 11 : 14 \).\ Let the scores be:
\[ \text{Amal's score} = 11x, \quad \text{Bimal's score} = 14x \]
After adding \( a \) to both scores, the new ratio becomes:
\[ \frac{11x + a}{14x + a} = \frac{47}{56} \]
\[ 56(11x + a) = 47(14x + a) \]
\[ 616x + 56a = 658x + 47a \]
Bring like terms together:
\[ 56a - 47a = 658x - 616x \quad \Rightarrow \quad 9a = 42x \]
\[ a = \frac{42x}{9} \]
Add \( a \) to Amal’s score only and compare with Bimal’s original score:
\[ \text{New Amal score} = 11x + a = 11x + \frac{42x}{9} = \frac{141x + 42x}{9} = \frac{183x}{9} \]
\[ \text{Ratio} = \frac{183x}{9} : 14x = \frac{183}{9} : 14 = 20.33 : 14 \]
But if we simplify directly using:
\[ \text{Required Ratio} = \left(14x + \frac{42x}{9} \right) : 14x = \frac{(126x + 42x)}{9} : 14x = \frac{168x}{9} : 14x \]
\[ \text{Divide both terms by } x: \quad \frac{168}{9} : 14 = \frac{168}{126} = \frac{4}{3} \]
\[ \boxed{4 : 3} \]